Go framework for building awesome LLM apps

🪿 LinGoose

Build Status GoDoc Go Report Card GitHub release

LinGoose (Lingo + Go + Goose 🪿) aims to be a complete Go framework for creating LLM apps. 🤖 ⚙️

Did you know? A goose 🪿 fills its car 🚗 with goose-line ⛽!

Help support this project by giving it a github star! ⭐ 🪿


LinGoose is a powerful Go framework for developing Large Language Model (LLM) based applications using pipelines. It is designed to be a complete solution and provides multiple components, including Prompts, Templates, Chat, Output Decoders, LLM, Pipelines, and Memory. With LinGoose, you can interact with LLM AI through prompts and generate complex templates. Additionally, it includes a chat feature, allowing you to create chatbots. The Output Decoders component enables you to extract specific information from the output of the LLM, while the LLM interface allows you to send prompts to various AI, such as the ones provided by OpenAI. You can chain multiple LLM steps together using Pipelines and store the output of each step in Memory for later retrieval.


LinGoose is composed of multiple components, each one with its own purpose.

Component Package Description
Prompt prompt Prompts are the way to interact with LLM AI. They can be simple text, or more complex templates. Supports Prompt Templates and Whisper prompt
Chat Prompt chat Chat is the way to interact with the chat LLM AI. It can be a simple text prompt, or a more complex chatbot.
Decoders decoder Output decoders are used to decode the output of the LLM. They can be used to extract specific information from the output. Supports JSONDecoder and RegExDecoder
LLMs llm LLM is an interface to various AI such as the ones provided by OpenAI. It is responsible for sending the prompt to the AI and retrieving the output. Supports OpenAI
Pipelines pipeline Pipelines are used to chain multiple LLM steps together.
Memory memory Memory is used to store the output of each step. It can be used to retrieve the output of a previous step. Supports memory in Ram
Document document Document is used to store a text
Loaders loader Loaders are used to load Documents from various sources. Supports TextLoader and DirectoryLoader.
TextSplitters textsplitter TextSplitters are used to split text or Documents into multiple parts. Supports RecursiveTextSplitter.
Embedders embedder Embedders are used to embed text or Documents into embeddings. Supports OpenAI
Indexes index Indexes are used to store embeddings and documents and to perform searches. Supports SimpleVectorIndex and Pinecone


Please refer to the DOCUMENTATION to understand how to use LinGoose. If you prefer the examples directory contains a lot of examples.

Talk is cheap. Show me the code. - Linus Torvalds


© Simone Vellei, 2023~`time.Now()` Released under the MIT License


It is a period of AI wars in the galaxy. A brave underground freedom fighter has challenged the tyranny and oppression of the non-Go languages. Striking from a fortress hidden among the billion stars of the galaxy, rebel developer has won their first victory in a battle with the powerful LinGoose.

Made with ❤️ in 🇮🇹

Get LinGoose at Github!